- Desiraju, G. R. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 1025-1030. Enraf-Nonius (1992). CAD-4-PC. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Ertan, N. & Özgün, H. B. (1996). Dyes Pigm. Submitted.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Guggenberger, L. J. & Teufer, G. (1975). Acta Cryst. B31, 785-790. Ide, S., Kendi, E. & Ertan, N. (1994). J. Chem. Cryst. 24, 743-746.
- Ide, S., Kendi, E., Özbey, S. & Ertan, N. (1994). Acta Cryst. C50, 1505-1507.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- McIntosh, S. A., Freeman, H. S. & Singh, P. (1989). Text. Res. J. 59, 389-395.
- Özbey, S., Kendi, E. & Ertan, N. (1995). Dyes Pigm. In the press.
- Özbey, S., Kendi, E., Hocaoğlu, N., Uyar, T. & Mak, T. C. W. (1993). Acta Cryst. C49, 2165–2167.
- Özbey, S., Kendi, E., Hocaoğlu, N., Uyar, T., Mak, T. C. W. & Cascarano, G. L. (1994). Acta Cryst. C50, 629-631.
- Pendergrass, D. B. Jr, Paul, I. C. & Curtin, D. Y. (1972). J. Am. Chem. Soc. 94, 8730–8737.
- Temel, A., Özbey, S. & Ertan, N. (1995). Dyes Pigm. In the press.

Acta Cryst. (1997). C53, 116-117

(5S)-3-Phenyl-5-[(6R,7R,14R)-1,8,13,16tetraoxadispiro[5.0.5.4]hexadecan-14-yl]-4,5-dihydroisoxazole: the Major Adduct Resulting from Cycloaddition of Benzonitrile Oxide to (6R,7R,14S)-14-Vinyl-1,8,13,16-tetraoxadispiro[5.0.5.4]hexadecane

Alexander J. Blake, Robert O. Gould*, R. Michael Paton* and Christine J. Todd

Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland. E-mail: gould@ed.ac.uk

(Received 28 August 1996; accepted 2 October 1996)

Abstract

This structure determination of $C_{21}H_{27}NO_5$, taken with the known absolute configuration of the starting alkene, establishes the configuration of the new stereogenic C5 centre in the title compound. The five-membered 4,5dihydroisoxazole ring adopts a predominantly envelope conformation folded between the O1 and C4 atoms, and the two pyranoid rings and the 1,4-dioxane ring of the dispiroketal unit are in chair conformations.

Comment

As part of an investigation into the factors influencing stereoselectivity in nitrile oxide cycloadditions to

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved chiral allyl ethers, the reaction of benzonitrile oxide (PhC \equiv N⁺—O⁻) with (6*R*,7*R*,14*S*)-14-vinyl-1,8,13,16-tetraoxadispiro[5.0.5.4]hexadecane, (1), has been examined (Gravestock, Paton & Todd, 1995). Two 4,5-di-hydroisoxazole cycloadducts, (2) (52%) and (3) (16%), were isolated from the reaction mixture and the former provided crystals suitable for X-ray crystallography. Taken with the known absolute configuration of the starting alkene (1) (Ley, Woods & Zanotti-Gerosa, 1992), the present structure determination firmly establishes that the newly created stereogenic C5 centre in adduct (2) has an *S* configuration and that the minor isomer, (3), therefore has a 5*R* structure.

The Cremer & Pople (1975) puckering parameters for the four rings are given in Table 3. For the fivemembered dihydroisoxazole ring, $\varphi = 319.3 (5)^{\circ}$, which corresponds to a mainly envelope conformation E5 ($\varphi =$ 324°), with the fold between the O1 and C4 atoms; the torsion angle for the O1—N2=C3—C4 unit is $-2.6 (3)^{\circ}$ and the C5 atom lies 0.406 (4) Å out of the best plane through these atoms. The θ values for the 1,4-dioxane ring and the two pyranoid rings indicate that the conformation ($\theta = 180^{\circ}$). No anomalies are found in the bond lengths and angles.

Fig. 1. A view of the title molecule, including the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

The title compound was obtained by cycloaddition of benzonitrile oxide to (6R,7R,14S)-14-vinyl-1,8,13,16-tetraoxadispiro-[5.0.5.4]hexadecane as reported elsewhere (Gravestock, Paton & Todd, 1995). Mo $K\alpha$ radiation

Cell parameters from 30

 $0.78 \times 0.23 \times 0.16$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\mu = 0.094 \text{ mm}^{-1}$

T = 293 (2) K

 $\theta = 15 - 16^{\circ}$

Column

Colourless

 $\theta_{\rm max} = 22.53^{\circ}$

 $h = -6 \rightarrow 6$

 $k = 0 \rightarrow 10$

 $l = 0 \rightarrow 16$

3 standard reflections

frequency: 60 min

intensity decay: <1%

Crystal data

C₂₁H₂₇NO₅ $M_r = 373.44$ Monoclinic P2₁ a = 6.3561 (14) Å b = 9.892 (2) Å c = 14.937 (3) Å $\beta = 95.04 (2)^{\circ}$ $V = 935.6 (3) \text{ Å}^3$ Z = 2 $D_x = 1.326 \text{ Mg m}^{-3}$ D_m not measured

Data collection Stoe diffractometer $\omega/2\theta$ scans Absorption correction: none 1308 measured reflections 1308 independent reflections [$I > 2\sigma(I)$]

Refinement

Refinement on F^2	Extinction correction:
R(F) = 0.0276	SHELXL93 (Sheldrick,
$wR(F^2) = 0.0766$	1993)
S = 1.095	Extinction coefficient:
1304 reflections	0.040 (5)
272 parameters	Atomic scattering factors
H-atom U's refined	from International Tables
$w = 1/[\sigma^2(F_o^2) + (0.0504P)^2]$	for Crystallography (1992,
+ 0.1692 <i>P</i>]	Vol. C, Tables 4.2.6.8 and
where $P = (F_o^2 + 2F_c^2)/3$	6.1.1.4)
$(\Delta/\sigma)_{\rm max} = -0.043$	Absolute configuration:
$\Delta \rho_{\rm max} = 0.156 \ {\rm e} \ {\rm \AA}^{-3}$	Flack (1983)
$\Delta \rho_{\rm min} = -0.140 \ {\rm e} \ {\rm \AA}^{-3}$	Flack parameter = $-0.6(13)$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	z	U_{eq}
01	0.6152 (3)	0.2638 (2)	0.24865 (13)	0.0268 (5)
N2	0.7749 (4)	0.2306 (3)	0.1911 (2)	0.0267 (6)
C3	0.8436 (4)	0.3392 (3)	0.1580(2)	0.0216 (6)
C4	0.7320 (4)	0.4642 (3)	0.1856 (2)	0.0246 (7)
C5	0.6329 (4)	0.4086 (3)	0.2658 (2)	0.0222 (7)
01′	0.3176 (3)	0.6307 (2)	0.47376 (12)	0.0242 (5)
C2′	0.2500 (4)	0.5767 (3)	0.5555 (2)	0.0275 (7)
C3′	0.0410 (4)	0.6349 (4)	0.5774 (2)	0.0313 (8)
C4′	-0.1239 (5)	0.6126 (3)	0.4984 (2)	0.0284 (7)
C5′	-0.0446(4)	0.6699 (3)	0.4140(2)	0.0253 (7)
C6′	0.1710 (4)	0.6133 (3)	0.3980 (2)	0.0210(6)
C7′	0.2762 (4)	0.6803 (3)	0.3206(2)	0.0210 (6)
O8′	0.1192 (3)	0.6785 (2)	0.24653 (12)	0.0238 (5)
C9′	0.1806 (5)	0.7412 (3)	0.1669 (2)	0.0272 (7)
C10'	0.2416 (5)	0.8873 (3)	0.1840 (2)	0.0309 (7)
C11′	0.4220 (5)	0.8943 (3)	0.2577 (2)	0.0326 (8)
C12′	0.3582 (5)	0.8226 (3)	0.3416(2)	0.0267 (7)
013'	0.4562 (3)	0.6054 (2)	0.29861 (12)	0.0216 (5)
C14′	0.4180(4)	0.4640(3)	0.2819 (2)	0.0218 (6)
C15′	0.3252 (5)	0.4016 (3)	0.3611 (2)	0.0257 (7)
O16′	0.1368 (3)	0.4728 (2)	0.37938 (13)	0.0246 (5)
C1 <i>P</i>	1.0131 (4)	0.3370 (3)	0.0972 (2)	0.0234 (7)

C2P	1.1602 (5)	0.2317 (3)	0.1015 (2)	0.0299(7)
C3P	1.3217 (5)	0.2320 (4)	0.0451 (2)	0.0353 (8)
C4P	1.3399 (5)	0.3367 (4)	-0.0154(2)	0.0379 (8)
C5P	1.1974 (5)	0.4425 (3)	-0.0192(2)	0.0338 (8)
C6P	1.0355 (4)	0.4432 (3)	0.0374 (2)	0.0263 (7)

Table 2. Selected geometric parameters (Å, °)

01—N2	1.425 (3)	C6'—O16'	1.430 (4)
01—C5	1.458 (4)	C6'—C7'	1.536 (4)
N2—C3	1.275 (4)	C7′—O8′	1.423 (3)
C3—C1P	1.469 (4)	C7'—O13'	1.425 (3)
C3—C4	1.501 (4)	C7'—C12'	1.524 (4)
C4—C5	1.506 (4)	O8'—C9'	1.425 (4)
C5—C14′	1.510(4)	C9'—C10'	1.513 (5)
01'—C6'	1.412(3)	C10'—C11'	1.519 (4)
01'—C2'	1.434 (3)	C11'—C12'	1.526 (4)
C2'—C3'	1.510 (4)	O13'-C14'	1.438 (4)
C3'—C4'	1.524 (4)	C14'-C15'	1.500 (4)
C4'-C5'	1.509 (4)	C15'—O16'	1.436 (4)
C5'—C6'	1.519 (4)	C1P—C6P	1.394 (4)
01'-C6'-C7'-08'	-172.9(2)	01—C5—C14′—C15′	60.5 (3)
01-C5-C14'-013'	179.5 (2)	N2—C3—C1P—C2P	-26.3(4)

Table 3. Puckering Parameters (Å, °)

Ring†	Q	θ	φ
Isoxazoline (O1–N2–C3–C4–C5)	0.258 (3)	-	319.3 (5)
Dioxane $(O13'-C14'-C15'-O16'-C6'-C7')$	0.534 (3)	175.4 (3)	57 (4)
Pyranoid (O1'-C6'-C5'-C4'-C3'-C2')	0.544 (3)	176.5 (3)	28 (5)
Pyranoid (08'-C7'-C12'-C11'-C10'-C9')	0.547 (3)	173.3 (3)	64 (3)

† Numbered in order of calculation (Cremer & Pople, 1975).

Data collection: *DIF4* (Stoe & Cie, 1990*a*). Cell refinement: *DIF4*. Data reduction: *REDU4* (Stoe & Cie, 1990*b*). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993). Molecular graphics: *SHELXTL/PC* (Sheldrick, 1992). Software used to prepare material for publication: *SHELXL93*.

The authors thank the SERC for provision of a fourcircle diffractometer and a maintenance grant (CRT), and Zeneca Pharmaceuticals for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HA1176). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Gravestock, M. B., Paton, R. M. & Todd, C. J. (1995). Tetrahedron Asymm. 6, 2723-2730.
- Ley, S. V., Woods, M. & Zanotti-Gerosa, A. (1992). Synthesis, pp. 52-54.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1992). SHELXTLIPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stoe & Cie (1990a). DIF4. Diffractometer Control Program. Version 7.09/DOS. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1990b). REDU4. Data Reduction Program. Version 7.03/DOS. Stoe & Cie, Darmstadt, Germany.